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Abstract 
Ultra-microanalysis of isotopes is required to clarify the origin, structure, and history of extremely small 

samples, for example micrometeorites and aerosols. However, a decrease in the number of measured atoms 

reveals a serious problem in the concept of isotopic ratio. The first fundamental defect of the isotopic ratio 

concept is imperfect reversibility of numerator and denominator, leading to two isotopic compositions 

inconsistent with each other. Secondly, the probability distribution of isotopic ratio is not the same as the 

binominal distribution, indicating that the mean isotopic ratio is systematically higher than the true isotopic 

ratio. Since these demerits should be avoided in ultra-microanalysis as much as possible, isotopic abundance 

or relative isotopic abundance should be used rather than isotopic ratio. The concept of isotopic ratio is, 

however, widely used in geochemical and cosmochemical fields, making it very difficult to abandon. 

Therefore, the potential uncertainty of isotopic ratio and the gap between the obtained isotopic ratio and the 

true one deriving from the number of sampling atoms and the isotopic ratio are vigorously evaluated here. In 

addition, a confirmation requirement for confirming an anomalous isotopic ratio is provided. The statistical 

model shown in the present work clearly indicates that the major isotope must be set as the denominator of 

isotopic ratio, i.e. isotopic ratio must be below 1, to reduce the effects of distorted probability distribution of 

isotopic ratio. In the precise measurement of isotopes, the potential error and disagreement with the true 

value must be tested when the number of sampled atoms is extremely few. Serious problems have not been 

occurred in research up to the present even in the case of NanoSIMS measurements, but this is because a 

sufficient number of atoms was analyzed and only extremely large isotopic anomalies were investigated. The 

correction and evaluation methods established in this paper will be required for accurate ultra-microanalysis. 

 

 

1. Introduction 
The conception of isotopic ratio has been developing 

with the history of isotopic chronology research for 

about 80 years. Recently, extremely small amounts of 

isotopes in minute samples can be measured with 

highly sensitivity and low background thanks to the 

development of new mass spectroscopic technology, 

e.g. secondary ion mass spectrometry (SIMS), 

inductively coupled plasma mass spectrometry 

(ICP-MS), thermal ionization mass spectrometer 

(TIMS), and noble gas mass spectrometer. Indeed, 

5×10-20 mol of Xe can be detected by a modified 

VG-5400 noble gas mass spectrometer, as reported in 

my previous papers [1-4]. Such ultra-microanalyses 

have also been conduced by other methods, for 

example, TIMS measurement for <1 μm uranium 

particles [5], and measurements of oxygen, carbon, and 

nitrogen isotopes in interplanetary dust particles (IDPs) 

using NanoSIMS [6,7]. 

 However, potential statistical error caused by the 

detected number of isotopes cannot be ignored in the 

future if technology of mass spectrometry is to further 
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evolve. In this paper, the fundamental concept of 

isotopic ratio and potential uncertainties of isotopic 

ratio are discussed, and correction and evaluation 

techniques are established. 

 

2. What is isotopic ratio? 
Since the discovery of ionium (230Th) by Boltwood in 

1906, isotopes have been used in various research and 

industry fields. In geochemistry, it is utilized to clarify 

the origin of terrestrial and extraterrestrial materials, 

determine the formation age of rock materials and 

cosmic-ray exposure age of meteorites, and elucidate 

an ancient climate. Such geochemical and 

cosmochemical approaches are based on an important 

concept, isotopic ratio. We can obtain a lot of valuable 

information on an object by comparing its isotopic 

ratio with the normal isotopic ratio with regard to each 

element. Although the conception of isotopic ratio is 

basic and planetary scientists and geochemists often 

use it, it is firstly required that the conception of 

isotopic ratio be strictly defined. Isotopic ratio can be 

expressed in three ways, as follows. 

(1) Isotopic ratio is the ratio of the numbers of isotopes 

X1 and X2 of element X contained in a certain sample. 

(2) Isotopic ratio is the ratio of the abundance of 

isotope X1 and X2 of element X contained in a certain 

sample. 

(3) Isotopic ratio is a ratio of the probability of 

sampling X1 and X2 when one atom is sampled at 

random from the population of X in a certain sample. 

(statistical definition) 

The three definitions have the same meaning, though 

the expressions are slightly different, and it would 

seem that each is entirely adequate. However, when the 

number of atom is extremely few, these definitions are 

clearly imperfect. For instance, when 1001 atoms of 

element X exist in a sample and the number of atoms 

of isotope X1 and X2 are 1 and 1000, respectively, the 

isotopic ratio of X1/X2 based on these definitions is 

precisely 0.001. The determined isotopic ratio of 0.001 

is completely correct and it has no uncertainty. If the 

normal isotopic ratio of X is 0.0001, I can thus 

conclude that the sample has ten times higher isotopic 

ratio than the standard sample. But still, common 

intuition tells us that this conclusion is quite strange 

because if another 1001 atoms of X in another sample 

are measured, X1 might well not exist. In other words, 

the isotopic ratio obtained here (0.001) might not 

accurately reflect the isotopic ratio of the X population 

when the set of 1001 X is a subset of the entire X 

population. Therefore, I redefined the isotopic ratio 

here to give generality as follows. 

 

Isotopic ratio is a probability distribution function of 

the ratio of the number of isotope X1 and X2 of element 

X contained in a certain sample. The isotopes are 

randomly selected from a population of element X that 

is composed of a finite but very large number of atoms.  

 

Thus the ratio for a sample has an inevitable potential 

uncertainty, but this is lowered by increasing the 

number of sampled atoms and has no relation with 

measurement accuracy at all. This definition assorts 

that isotopic ratio is not one numerical value but a 

distribution with inevitable uncertainty even if all 

atoms in a sample can be detected completely. If 

enormously large number of atoms is measured, the 

uncertainty will almost become 0 and the distribution 

will converge upon a value. However, the inevitable 

uncertainty cannot become exactly 0, since an infinite 

number of atoms cannot be measured. If there were an 

infinite number of atoms in the population, there would 

be no way to determine the isotopic ratio because one 

would never finish counting the atoms. Isotopic ratio is 

thus defined for a countable number of atoms, 

indicating that the ratio always has dispersion. This 

inevitable incertitude is detailed in the following 

chapters. 

 

3. Indeterminacy probability 
In the previous chapter I started that the isotopic ratio 

for a sample of infinite atoms couldn’t be determined. 

Another indeterminate case is discussed here, i.e. 

where only one isotope atom exists in a sample. When 

some atoms are randomly sampled from a population, 

the indeterminacy probability Pi is calculated by the 

equation below. 
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where n is the number of sampled atoms and R is the 
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isotopic ratio of the population. Because the number of 

atoms in the population is enormously large, the 

probability of sampling isotope X1 is always the same. 

The relationship between the number of sampling 

atoms and the indeterminacy probability is presented in 

Fig. 1. This probability provides a minimum 

requirement for isotope analysis. 

 
Fig. 1: Indeterminacy probability versus the number of 

atoms. 

 

4. Fundamental demerits of isotopic ratio 
This section indicates two fundamental defects of 

isotopic ratio and provides a strategy consisting of a 

statistical model to remedy them. Fig. 2 shows a chart 

of this model. When n atoms are extracted at random 

from a population which has an isotopic ratio of R 

(X1/X2), the isotopic ratio of extracted atoms (Rm) has a 

statistical dispersion which is dependent on n and R. If 

the number of atoms in the population is N and all 

atoms are sampled, Rm will accurately be equal to R 

with no uncertainty, with a probability of 1. However, 

it is impossible to sample all atoms because N is a 

nearly infinite number practically speaking, in spite of 

its countability as mentioned above. The probability 

that number of X1 atoms are sampled (x1) is expressed 

by the binominal distribution shown below. 
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The average ( 1x ) and variance (s1
2) of the binominal 

distribution are shown below. 
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Fig. 2. Conceptual diagram of the model. n atoms are 

randomly extracted from the population, whose isotopic 

ratio is R, and some of the atoms in the sample are 

ionized and transported to the collector. The obtained 

isotopic ratio by the measurement (Rd) is statistically 

distributed by two-step sampling. The unavoidable 

uncertainty of isotopic ratio depends on the number of 

atoms in the sample (n) and detection efficiency (Ed). 

Even if all atoms in the sample can be detected, Rm has 

inevitable deviation because n is much fewer than N. The 

final goal of this model is to estimate the true isotopic 

ratio (R) from known parameters. 

 

Therefore, relative standard deviation D1 can be 

computed from expressions (3) and (4) as shown 

below. 
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The D1 shows the inevitable uncertainty of the number 

of X1 in a sample. In a similar procedure, relative 

standard deviation of the number of X2 in the sample is 

expressed as below. 
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However, the probability distribution of isotopic ratio 
cannot be expressed by such a simple binominal 
distribution, and the average isotopic ratio ( mR ) is 
always higher than the isotopic ratio of the population 
(R). 
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Note that the expression is not the sum from 0 to n but 
0 to n-1 because isotopic ratio cannot be defined when 
x=n and at any rate the possibility of x=n is extremely 
low. Fig. 3 presents an example of the probability 
distribution of isotopic ratio when R=1 and n=500. 
Although R coincides with the mode of the distribution 
when n is large, as proved in the next section, mR  is 
systematically higher than R due to the form of the 
distribution function. This property of isotopic ratio is 
a fatal defect for the detailed investigation of isotopic 
composition through ultra-microanalysis because we 
cannot obtain the true isotopic ratio (R) from the 
average of measured values. The gap between R and 

mR  is controlled by the number of sampled atoms and 
R. Fig. 4 shows the relationship between RRm /  ratio 
and n. When sampled atoms are few and isotopic ratio 
is high, the gap between R and mR becomes 
significantly large. Note that RRm /  ratio is quite 
different in the cases of R=0.1 and 10, although they 
indicate the same isotopic composition. The result 
implies another demerit of isotopic ratio, which is the 
imperfect reversibility of numerator and denominator. 
This is demonstrated in the inequality below, which 
also shows that the arithmetic mean is always higher 
than the harmonic mean. 
 







  l

x x

l

x
x

R

l

l

R

1

1

1
  (8) 

 

Rs is isotopic ratio for each measurement step and l 
shows the number of measurement steps. The 

expression means that the average of isotopic ratios 

(left-hand side) is always higher than the reciprocal of 

the average of reciprocal of isotopic ratios (right-hand 

side), showing that reversing numerator and 

denominator leads to different conclusions. The 

inequality (8) is proved by Cauchy's inequality. 

 

 

Fig. 3: The distribution function of Rm. R and n are set to 

be 1 and 500. The dotted curve shows a normal 

distribution as reference. It is clear that the mean of Rm is 

systematically higher than R due to the disagreement with 

normal distribution.  

 

 Since researchers search for the true isotopic 

composition of measured sample, it is a significant 

problem that the calculated isotopic composition is 

different depending on the isotope selected as the 

denominator. Moreover, the average of isotopic ratios 

is systematically higher than the true isotopic ratio as 

presented in expression (7). These two faults are 

remedied by using isotopic abundance instead of 

isotopic ratio. The probability distribution of isotopic 

abundance is displayed by a binominal distribution and 

its mean exactly coincides with R. The problem of the 

numerator and denominator can completely be avoided 

because the reciprocal of isotopic abundance is not 

used and the expression below is applicable to the 

inequality (8). 
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xi shows the number atoms of isotope Xi. If all isotopes 
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of an element cannot be measured, it is advisable to 

measure partial isotopic abundance, which is defined 

as the ratio of the abundance of a certain isotope to all 

measured isotopes. In this way, isotopic abundance or 

partial isotopic abundance which is preferable to 

isotopic ratio for detailed microanalysis can be 

measured. Isotopic ratio, however, has been 

conventionally used for a long time, so that now it is 

completely established as a standard concept. I shall 

thus discuss here the limits of the determination of 

isotopic ratio and provide an appropriate correction 

and evaluation method. When isotopic ratio is used, it 

is very important to select the major isotope as the 

denominator of isotopic ratio because otherwise the 

distortion of the probability distribution function 

becomes large as seen in Fig. 4. It is a mistake to 

define an isotopic ratio which will be over 1. This 

important suggestion conflicts with some traditional 

manner of expression, in which the minor isotope is 

generally set to in the denominator of isotopic ratio, for 

example, 40Ar/36Ar [8]. 

 

 

Fig. 4: The ratio between R and mR  plotted against the 

number of atoms and different values of R. When R is 

high and n is small, the disagreement is not negligible. 

This characteristics of isotopic ratio has a grave effect on 

the reliability of conclusions. 

 

5. Inevitable uncertainty of isotopic ratio 
To estimate the inevitable uncertainty of isotopic ratio, 

the distribution function of isotopic ratio has to be 

formulated using an approximation technique. Because 

a binominal distribution can be approximated with a 

normal distribution using Laplace's theorem, the 

distribution function of isotopic ratio of a sample (Rm) 

is expressed by the following equation using equation 

(3) and (4). 
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Since this function is not normalized, its integral value 

doesn’t become 1. Normalized probability density 

function is obtained by the following expression.  
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This is the probability distribution function of Rm. 

Differential of the expression (10) is shown below.  
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When )( mRg  is 0, Rm becomes maximum, i.e. the 
mode of the probability distribution. Because the value 
of equation (12) is 0 when Rm=R, the mode of Rm thus 
coincides with R. The average of Rm ( mR ) and variance 
( 2

mRs ) are defined by the following expressions using 
the functions of x1 obtained from the equation (3) 
and (4). 
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In these expressions, x1=n is excluded because isotopic 
ratio cannot be determined in this case. When n is large 
enough (>ca one thousand), and R is lower than 1, mR  
can be approximated with high accuracy by the 
following simple equation.  
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Fig. 5: Inevitable uncertainty of isotopic ratio inherent in 

the number of sampled atoms and the isotopic ratio of the 

population. Two dotted lines represent indeterminacy 

probabilities of 1% and 0.1%. Since the uncertainty is 

unavoidable, it provides a fundamental limit of 

measurement accuracy. 

 
Derivation of this approximation is detailed in the 

appendix. If the distribution function of isotopic ratio 

coincides with the normal distribution, the standard 

deviation can be easily calculated. However, the 

function (10) is an asymmetrical distribution, and it is 

very difficult to solve the equation (14). Nevertheless, 

the variance of isotopic ratio can be approximated by a 

simple expression when n is large and R is lower than 

1. A formula for approximate standard deviation of 

isotopic ratio is obtained from equations (3) and (4) as 

follows.  
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When n>>R, the expression (17) is simplified as 

below. 
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Fig. 5 shows the relationship between the number of 

atoms and relative standard deviation of isotopic ratio. 

The diagram indicates that the measured isotopic ratio 

always has potential error, which does not depend on 

experimental uncertainties at all.  

 

6. Confirmation requirement for isotopic anomaly 

It is important to judge whether an obtained 
isotopic ratio is anomalous or not. Since the isotopic 
ratio unavoidably has statistical uncertainty which is 
estimated by expression (16), the anomaly of isotopic 
ratio has to be evaluated from the probability density 
function. When the level of significance is set to be 
0.05 and Rn is normal isotopic ratio, the requirement 
for anomaly with regarded to the relation nm RR   or 

nm RR   is approximately expressed as follows. 
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If n is large enough compared with R, mR  is almost 
equal to R and the requirement (19) can be simplified 
to the inequality below. 
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This is the convenient expression of the confirmation 

requirement for isotopic anomaly. In the expression 

(20), R and Rn are mutually exchangeable and thus 

another important expression is produced.  
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The inequality provides the requirement for an isotopic 

ratio (R) to be confirmed anomalous as compared with 

a normal isotopic ratio (Rn). The relationship between 

this requirement and number of atoms is shown in Fig. 

6. If the difference between R and normal isotopic ratio 

of Rn is larger than the corresponding curve in the 

diagram, significant isotopic fractionation is detectable. 

On the other hand, if the composition of n or R doesn’t 

satisfy this requirement, i.e. its plotted position is 

under the curve, it is impossible to prove an isotopic 

anomaly even though the isotopic ratio in a sample is 

completely determined by an all-powerful mass 

spectrometer, because the uncertainty derives from the 

number of sampled atoms. 

 

 
Fig. 6: Confirmation requirement for isotopic anomaly. 

Because isotopic ratio has inevitable uncertainty, a certain 

number of atoms is required to prove a significant 

isotopic anomaly. 

 

 Table 1 presents the minimum atomicity of each 

element needed to confirm 1 and 10% isotopic 

anomaly calculated from expression (21). The listed 

numbers have two significant digits. Although current 

mass spectrometers cannot investigate such small 

numbers of isotopes accurately, the confirmation limits 

shown in this table are fundamental barriers to precise 

isotopic analysis in future.  

 In the discussions above, measurement error, which 

originates in the structure and instability of the 

analytical device, is completely ignored. When the 

measurement error is described as sm, total uncertainty 

of isotopic ratio (stotal) is simply expressed as follows 

due to the law of propagation of errors. 
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sm is derived from various causes, the main ones being 

related the structure of the measuring equipment. In 

general, atoms introduced into the mass spectrometer 

are ionized in the ion source, resolved according to 

mass, and finally detected by collectors. Since an ion 

source cannot ionize all isotopes and all ions cannot 

reach the collectors, the number of detected isotopes is 

always smaller than the total number of isotopes in a 

sample. If the sampling in the mass spectrometer is 

done at random, detection efficiency (Ed) is determined 

by the ionization efficiency (Ei) and transporting 

efficiency (Et). 
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If the detection probability is constant, the probability 

distribution function of detected number of atoms (m) 

is expressed by a binominal distribution.  
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m
dmn EECmf  1)(   (24) 

 

On the other hand, the probability distribution of the 

number of detected isotope X1 (y1) is a hypergeometric 

distribution, which can be approximated by binominal 

distribution when the number of atoms in the sample 

(n) is large.  
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Rm shows the isotopic ratio of the sample. Since the 

equation (25) can be approximated by a normal 
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distribution, the distribution function of the isotopic 

ratio of detected isotopes is expressed as follows. 
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This is the same expression as equation (10). Since this 

equation is a function of both m and Rm, all cases have 

to be considered. The distribution function of Rd for a 

certain Rm by equation (24) and (26) becomes the 

following expression. 
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This equation considers all the cases of m. Since the 

distribution function of Rm is obtained by equation (10), 

the distribution function of Rd finally develops as 

follows. 
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The probability distribution function is obtained if this 

function is normalized as in the case of equation (11). 

Because this function is very complex, another 

approach is adopted here as an approximate calculation. 

The mean and variance of y1 and y2 can be presented as 

follows because of their hypergeometric distribution. 
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The standard deviation of Rd (
dRs ) is approximately 

calculated from the expressions (29) and (30) in the 
same way as equation (16). 
 

   
    

   mnRnm

nmnmRR

sym

sy

sym

sy
s

m

mm

y

y

y

y
Rd




























1

11

2

1

1

1

1

1

1

1

1

1

  (31) 

 

The mean of the 
dRs (

dRs ) can be calculated from 

m
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using the equations (11) and (24). However, a more 
simple method is adopted here to avoid this complex 
computation. 

dRs  is approximated substituting m for 

the mean of m ( dnEm  ) in the expression (31), 
although this approximated value is always slightly 
lower than the true 

dRs . 
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When n is large and Ed is high, the approximation has 
high accuracy. In the same way, if Rm is substituted for 

mR using equation (15), the expression (32) is 
described in terms of n, R, and Ed as follows.  
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When n>>1>R, this can be simplified to 
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This expression can be utilized to estimate the 
inevitable uncertainty of isotopic ratio, due to n, R, and 
Ed. It is important to keep in mind that the detection 
efficiency strongly affects the error. 
 In the isotopic measurement, detectable uncertainty 
does not, however, coincide with the estimated error 
for two reasons. First, the sample had already been 
selected before the measuring process, meaning that Rm 
and n are initially fixed and potential error due to 
sampling from a population, which is shown by the 
equation (14), is not detectable. Second, measurement 
error is generated by the fluctuation due to the 
instability of the analytical device. If the contribution 
of the fluctuation of the equipment (f) is taken into 
consideration, the standard deviations of the numbers 
of detected isotopes ( 1y and 2y ) become the 
equations below using the equation (30) derived from 
the law of propagation of errors. 
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1ys  and 2ys  are given by the equation (30). f is set to 
be constant here. The approximated standard deviation 
of Rd is, therefore, calculated by the same procedure 
for expression (31). 
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This is the total detectable uncertainty of isotopic ratio. 

The confirmation requirement for isotopic anomaly is 

shown below. 
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Because Rm and n are constant, Ed and f control the 
detected error. However, the 

dR  cannot be regarded 
as the measurement error itself in most cases, because 
it expresses the potential error of only one 
measurement of m atoms, which means that 

dR  
predicts a potential error for a one-step isotopic 
measurement. In general, more than eight 
measurements are carried out to measure an isotope 
ratio, and the standard deviation is calculated. 
Therefore, when l step measurements are carried out, m 
has to be substituted with m/l in the expression (36). 
The average of the measurement error is described as 
follows. 
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This expression predicts average error derived from n, 
l, Ed, f, and Rm. The error is the detectable error 
obtained by measurement. If the calculated ms  is 
larger than the obtained measurement error when 0 is 
substituted for f, it cannot be adopted as a plausible 

uncertainty because the calculated ms  reflects the 
inevitable error caused by Ed. 
 If the potential error of Rm is taken into consideration, 
the total of detectable and undetectable uncertainty can 
be calculated by the equation (22). To compute the 
total error, R has to be expressed by dR  in the 
equation. In the first step, Rm is expressed by dR  
referring to equation (15). 
 

 

   
l

Rmllmlm
R

m

Rl
RR

d
m

m
md

2

4

1
1

2 








 


  (39) 

 

Although this Rm is the isotopic ratio in the sample as 
deduced from dR , R cannot be determined from the 
Rm because Rm is a probability distribution function. 
Only the plausible value with the highest possibility is, 
therefore, presented. If the Rm is regarded as mR , the 
most plausible R (Rest) can be estimated. 
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The expression provides a practical method to estimate 
a plausible true isotopic ratio from n, m, l, and dR , all 
of which can be obtained by analytical procedures. The 
total uncertainty of isotopic ratio can thus be expressed 
using the Rest. 
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The last three equations are applicable to most mass 
spectrometry, although they have to be slightly 
amended in the case of a gas mass spectrometer, which 
can repeatedly detect atoms. In such case, m/l is 
replaced with the average of the number of detected 
atoms ( p ) in one measurement step in the equation 
(39).  
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The total of inevitable uncertainty in the two-step 

sampling procedure is calculated using equations (15), 

(31), (42), and (43).  
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(44) 

 

This equation is available to estimate an expected 
inevitable error from n, p  and dR . Fig. 7 presents a 
diagram dest RR /  versus p  when n is fixed to be 
1,000,000. This figure can predict the required number 
of atoms to be detected before the measurement. If the 
content of the target element in a sample is known, it is 
also possible to calculate the required detection time.  
 

 

Fig. 7: dest RR / , with Rest estimated from dR  and p  

using the equations (43) and (44). n is set to be 1,000,000. 

Shaded areas show the range of one sigma uncertainty.   

p  means the number of atoms detected in a step of 

measurement. 

 

7. Correction using the standard 
The isotopic ratio obtained by measurement is usually 

corrected using a mass bias coefficient determined by 

analysis of the standard. If the same amount of the 

standard as the measured sample is used, the difference 

from the true isotopic ratio is counterbalanced by the 

bias coefficient because the coefficient expresses the 

effect causes the deviation from the true value. 

However, a standard much larger than the sample is 

generally analyzed to determine an accurate mass bias 

coefficient. When very large amount of the standard is 

used compared with that of the sample, the correction 

of isotopic ratio presented in the equation (40) or (43) 

is usable. In particular, the correction of isotopic ratio 

will be required in ultra-microanalysis. 

 

8. The statistical effects on previously reported data 
Recently, measurements of isotopic compositions of 

extremely small samples are reported using very 

sensitive mass spectrometers. Particularly, NanoSIMS, 

a new generation secondary ion mass spectrometer, 

allows isotopic imaging at a spatial scale of 50 nm and 

can detect around 6000 atomic ions with ionization of 

0.005 and transmission of 100%. This apparatus is 

used in the field of cosmochemistry [9], geology [10], 

and biology [11]. In this section, I verify the validity of 

some reported data.  

First, I verify the carbon isotopic anomaly discovered 

in an IDP nicknamed Benavente, which contains a 

large (0.6×1.8 μm2) region that is depleted in 13C 

(12C/13C = 96.6 ± 1.3; δ13C = -70 ± 13‰) [6]. Because 

these researchers obtained isotopic imaging at a spatial 

scale of 100 nm, it is assumed that there are 108 

measured points (6×18). Thus an estimated isotopic 

ratio (Rest) and total uncertainty (Stotal) are calculated 

from the equations (40) and (41) as a function of n. In 

the calculation, l = 108 and m = nEd = n × 0.005. When 

the level of significance is set to 0.05, about 

34,000,000 carbon atoms (170,000 detected atomic 

ions) are required to prove the anomaly with regard to 

the terrestrial carbon isotopic ratio of 89. This 

requirement is presumably satisfied because the 

isotopic anomaly is detected in carbonaceous material 

regions (in rough estimation, over 3% C is required). 

In another paper, Stadermann and Floss (2004) 

reported oxygen isotope anomaly in a noncluster IDP 

TIBERIUS, having a high 17O/16O ratio of 1.31 ± 0.03 

× 10–3 in a well-defined individual grain that has a size 

of 350 × 600 nm2 [12]. Only 1000 oxygen atoms are 
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needed to verify this anomalous isotopic ratio with 

regard to the terrestrial ratio of 3.81×10-4, because the 

isotopic anomaly is significantly large.  

 I also checked several other papers and verify that the 

statistical effects on isotopic ratio did not strongly 

affect the conclusions reached, since a sufficient 

number of atoms was measured even in NanoSIMS 

and/or the isotopic anomaly was extremely large. I can 

thus conclude that fortunately no serious problem has 

occurred up to the present. However, if the 

measurement of a smaller number of atoms is required 

in the future, for example isotope analysis for a single 

presolar grain, it will be necessary to understand the 

statistical characteristics of isotopic ratio outlined in 

this paper and to carefully handle obtained data.  

 

9. Conclusions 
The statistical discussions presented in this paper 

provide several important conclusions, relating to the 

fundamental characteristics of isotopic ratio. The most 

significant defect of isotopic ratio is that the 

probability distribution function of isotopic ratio is not 

the same as the binominal distribution, suggesting that 

the average value of isotopic ratio always higher than 

the true one. When the isotopic ratio is over 1, the 

difference between the true and averaged isotopic ratio 

is not negligible, even if the number of measured 

atoms are large. Therefore, it is necessary to set the 

isotopic ratio lower than 1 to reduce this difference, 

showing another basic shortcoming of isotopic ratio, 

that is, the imperfect reversibility of numerator and 

denominator. Since these two fundamental 

characteristics cause intolerable inaccuracies in the 

analysis of extremely small numbers of atoms, isotopic 

abundance should be used rather than isotopic ratio.  

 However, it is difficult to stop use of isotopic ratio 

immediately because it is widely used in various fields 

of science and in the measurement by most types of 

mass spectrometer. Therefore, it is important to 

calculate the inevitable uncertainty and a plausible true 

isotopic ratio using the expressions presented in this 

paper. It is especially necessary for such the 

computations to be carried out when an extremely 

small sample is measured, e.g. spot analysis for a 

minute object using a precise mass spectrometer, 

although no serious problem was found in previous 

such reports. In the future, functions for estimating 

potential uncertainty and correcting the isotopic ratio 

should be built in the measurement program of mass 

spectrometers because the technique of 

ultra-microanalysis will evolve in this century.  
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Appendix  
The equation (13) can be transformed as follows. 

(45) 

 

Therefore, the average of Rm can be approximated by 

the equation (15) when n is large and R is lower than 1. 
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